miércoles, 22 de febrero de 2017

¿CÓMO SE PROCESAN LOS PAQUETES TCP/IP EN EL MODELO OSI?

Los protocolos como TCP/IP determinan cómo se comunican las computadoras entre ellas por redes como Internet. Estos protocolos funcionan conjuntamente, y se sitúan uno encima de otro en lo que se conoce comúnmente como pila de protocolo. Cada pila del protocolo se diseña para llevar a cabo un propósito especial en la computadora emisora y en la receptora. La pila TCP combina las pilas de aplicación, presentación y sesión en una también denominada pila de aplicación.

En este proceso se dan las características del envasado que tiene lugar para transmitir datos:

La pila de aplicación TCP formatea los datos que se están enviando para que la pila inferior, la de transporte, los pueda remitir. La pila de aplicación TCP realiza las operaciones equivalentes que llevan a cabo las tres pilas de OSI superiores: aplicaciones, presentación y sesión.

La siguiente pila es la de transporte, que es responsable de la transferencia de datos, y asegura que los datos enviados y recibidos son de hecho los mismos, en otras palabras, que no han surgido errores durante él envió de los datos. TCP divide los datos que obtiene de pila de aplicación en segmento.

Agrega una cabecera contiene información que se usará cuando se reciban los datos para asegurar que no han sido alterados en ruta, y que los segmentos se pueden volver a combinar correctamente en su forma original.

La tercera pila prepara los datos para la entrega introduciéndose en data gramas IP, y determinando la dirección Internet exacta para estos. El protocolo IP trabaja en la pila de Internet, también llamada pila de red. Coloca un envase IP con una cabecera en cada segmento. La cabecera IP incluye información como la dirección IP de las computadoras emisoras y receptoras, la longitud del data grama y el orden de su secuencia.

El orden secuencial se añade porque el data grama podría sobrepasar posiblemente el tamaño permitido a los paquetes de red, y de este modo necesitaría dividirse en paquetes más pequeños. Incluir el orden secuencial les permitiría volverse a combinar apropiadamente.



MODELO OSI Y SUS 7 CAPAS:


FUNCIONAMIENTO DE LA IP DENTRO DEL MODELO OSI

El protocolo de IP es la base fundamental de Internet. Hace posible enviar datos de la fuente al destino. El nivel de transporte parte el flujo de datos en datagramas. Durante su transmisión se puede partir un datagrama en fragmentos que se montan de nuevo en el destino.


Paquetes de IP:


  • Versión. Es la 4. Permite las actualizaciones.
  •  IHL. La longitud del encabezamiento en palabras de 32 bits. El valor máximo es 15, o 60 bytes.
  • Tipo de servicio. Determina si el envío y la velocidad de los datos es fiable. No usado.
  • Longitud total. Hasta un máximo de 65.535 bytes.
  • Identificación. Para determinar a qué datagrama pertenece un fragmento.
  • DF (Don't Fragment). El destino no puede montar el datagrama de nuevo.
  • MF (More Fragments). No establecido en el fragmento último.
  • Desplazamiento del fragmento. A qué parte del datagrama pertenece este fragmento. El tamaño del fragmento elemental es 8 bytes.
  • Tiempo de vida. Se decrementa cada salto.
  • Protocolo. Protocolo de transporte en que se debiera basar el datagrama. Las opciones incluyen el enrutamiento estricto (se especifica la ruta completa), el enrutamiento suelto (se especifican solamente algunos routers en la ruta), y grabación de la ruta.

La operación técnica en la que los datos son transmitidos a través de la red se puede dividir en dos pasos discretos, sistemáticos. A cada paso se realizan ciertas acciones que no se pueden realizar en otro paso. Cada paso incluye sus propias reglas y procedimientos, o protocolo.


Los pasos del protocolo se tienen que llevar a cabo en un orden apropiado y que sea el mismo en cada uno de los equipos de la red.

En el equipo origen, estos pasos se tienen que llevar a cabo de arriba hacia abajo. En el equipo de destino, estos pasos se tienen que llevar a cabo de abajo hacia arriba.

El equipo origen:

Los protocolos en el equipo origen:

  1. Se dividen en secciones más pequeñas, denominadas paquetes.
  2. Se añade a los paquetes información sobre la dirección IP, de forma que el equipo de destino pueda determinar si los datos le pertenecen.
  3. Prepara los datos para transmitirlos a través de la NIC y enviarlos a través del cable de la red.


El equipo de destino:

Los protocolos en el equipo de destino constan de la misma serie de pasos, pero en sentido inverso.

  1. Toma los paquetes de datos del cable y los introduce en el equipo a través de la NIC.
  2. Extrae de los paquetes de datos toda la información transmitida eliminando la información añadida por el equipo origen.
  3. Copia los datos de los paquetes en un búfer para reorganizarlos enviarlos a la aplicación.

Los equipos origen y destino necesitan realizar cada paso de la misma forma para que los datos tengan la misma estructura al recibirse que cuando se enviaron.

FUNCIONAMIENTO DE LA CAPA DE RED EN EL MODELO OSI

La capa de red proporciona sus servicios a la capa de transporte, siendo una capa compleja que proporciona conectividad y selección de la mejor ruta para la comunicación entre máquinas que pueden estar ubicadas en redes geográficamente distintas.

Es la responsable de las funciones de conmutación y enrutamiento de la información (direccionamiento lógico), proporcionando los procedimientos necesarios para el intercambio de datos entre el origen y el destino, por lo que es necesario que conozca la topología de la red (forma en que están interconectados los nodos), con objeto de determinar la ruta más adecuada.

Sus principales funciones son:


  • Dividir los mensajes de la capa de transporte (segmentos) en unidades más complejas, denominadas paquetes, a los que asigna las direcciones lógicas de los computadores que se están comunicando.



  • Conocer la topología de la red y manejar el caso en que la máquina origen y la máquina destino estén en redes distintas.

  • Encaminar la información a través de la red en base a las direcciones del paquete, determinando los métodos de conmutación y enrutamiento a través de dispositivos intermedios (routers).

  • Enviar los paquetes de nodo a nodo usando un circuito virtual o datagramas.

  • Ensamblar los paquetes en el computador destino.






En esta capa es donde trabajan los routers, dispositivos encargados de encaminar o dirigir los paquetes de datos desde el origen hasta el destino a través de la mejor ruta posible entre ellos.


MOTIVOS DEL SURGIMIENTO DE LA IP VERSION 6

El motivo básico para crear un nuevo protocolo fue la falta de direcciones. IPv4 tiene un espacio de direcciones de 32 bits, en cambio IPv6 ofrece un espacio de 128 bits. El reducido espacio de direcciones de IPv4, junto al hecho de falta de coordinación para su asignación durante la década de los 80, sin ningún tipo de optimización, dejando incluso espacios de direcciones discontinuos, generan en la actualidad, dificultades no previstas en aquel momento.

Otros de los problemas de IPv4 es la gran dimensión de las tablas de ruteo en el backbone de Internet, que lo hace ineficaz y perjudica los tiempos de respuesta.
Debido a la multitud de nuevas aplicaciones en las que IPv4 es utilizado, ha sido necesario agregar nuevas funcionalidades al protocolo básico, aspectos que no fueron contemplados en el análisis inicial de IPv4, lo que genera complicaciones en su escalabilidad para nuevos requerimientos y en el uso simultáneo de dos o más de dichas funcionalidades.

Entre las más conocidas se pueden mencionar medidas para permitir la Calidad de Servicio, Seguridad y movilidad.


Direcciones en la versión 6

El sistema de direcciones es uno de los cambios más importantes que afectan a la versión 6 del protocolo IP, donde se han pasado de los 32 a los 128 bit (cuatro veces mayor).
Estas nuevas direcciones identifican a un interfaz o conjunto de interfaces y no a un nodo, aunque como cada interfaz pertenece a un nodo, es posible referirse a éstos a través de su interfaz.

El número de direcciones diferentes que pueden utilizarse con 128 bits es enorme. Teóricamente serían 2128 direcciones posibles, siempre que no apliquemos algún formato u organización a estas direcciones. Este número es extremadamente alto, pudiendo llegar a soportar más de 665.000 trillones de direcciones distintas por cada metro cuadrado de la superficie del planeta Tierra. Según diversas fuentes consultadas, estos números una vez organizados de forma práctica y jerárquica quedarían reducidos en el peor de los casos a 1.564 direcciones por cada metro cuadrado, y siendo optimistas se podrían alcanzar entre los tres y cuatro trillones.

Existen tres tipos básicos de direcciones IPv6 según se utilicen para identificar a un interfaz en concreto o a un grupo de interfaces. Los bits de mayor peso de los que componen la dirección IPv6 son los que permiten distinguir el tipo de dirección, empleándose un número variable de bits para cada caso. Estos tres tipos de direcciones son:

  • Direcciones unicast: Son las direcciones dirigidas a un único interfaz de la red. Las direcciones unicast que se encuentran definidas actualmente están divididas en varios grupos. Dentro de este tipo de direcciones se encuentra también un formato especial que facilita la compatibilidad con las direcciones de la versión 4 del protocolo IP.



  • Direcciones anycast: Identifican a un conjunto de interfaces de la red. El paquete se enviará a un interfaz cualquiera de las que forman parte del conjunto. Estas direcciones son en realidad direcciones unicast que se encuentran asignadas a varios interfaces, los cuales necesitan ser configurados de manera especial. El formato es el mismo que el de las direcciones unicast.


Direcciones multicast: Este tipo de direcciones identifica a un conjunto de interfaces de la red, de manera que el paquete es enviado a cada una de ellos individualmente.

Las direcciones de broadcast no están implementadas en esta versión del protocolo, debido a que esta misma función puede realizarse ahora mediante el uso de las direcciones multicast.



Formato de la cabecera

El tamaño de la cabecera que el protocolo IPv6 añade a los datos es de 320 bit, el doble que en la versión 4. Sin embargo, esta nueva cabecera se ha simplificado con respecto a la anterior. Algunos campos se han retirado de la misma, mientras que otros se han convertido en opcionales por medio de las extensiones. De esta manera los routers no tienen que procesar parte de la información de la cabecera, lo que permite aumentar de rendimiento en la transmisión. El formato completo de la cabecera sin las extensiones es el siguiente:


  • Versión: Número de versión del protocolo IP, que en este caso contendrá el valor 6. Tamaño: 4 bit.

  • Prioridad: Contiene el valor de la prioridad o importancia del paquete que se está enviando con respecto a otros paquetes provenientes de la misma fuente. Tamaño: 4 bit.

  • Etiqueta de flujo: Campo que se utiliza para indicar que el paquete requiere un tratamiento especial por parte de los routers que lo soporten. Tamaño: 24 bit.





  • Longitud: Es la longitud en bytes de los datos que se encuentran a continuación de la cabecera. Tamaño: 16 bit.

  • Siguiente cabecera: Se utiliza para indicar el protocolo al que corresponde la cabecera que se sitúa a continuación de la actual. El valor de este campo es el mismo que el de protocolo en la versión 4 de IP. Tamaño: 8 bit.




  • Límite de existencia: Tiene el mismo propósito que el campo de la versión 4, y es un valor que disminuye en una unidad cada vez que el paquete pasa por un nodo. Tamaño:8 bit.

  • Dirección de origen: El número de dirección del host que envía el paquete. Su longitud es cuatro veces mayor que en la versión 4. Tamaño: 128 bit.

  • Dirección de destino: Número de dirección de destino, aunque puede no coincidir con la dirección del host final en algunos casos. Su longitud es cuatro veces mayor que en la versión 4 del protocolo IP. Tamaño: 128 bit.




Las extensiones que permite añadir esta versión del protocolo se sitúan inmediatamente después de la cabecera normal, y antes de la cabecera que incluye el protocolo de nivel de transporte.

Los datos situados en cabeceras opcionales se procesan sólo cuando el mensaje llega a su destino final, lo que supone una mejora en el rendimiento. Otra ventaja adicional es que el tamaño de la cabecera no está limitado a un valor fijo de bytes como ocurría en la versión 4.

Por razones de eficiencia, las extensiones de la cabecera siempre tienen un tamaño múltiplo de 8 bytes. Actualmente se encuentran definidas extensiones para routing extendido, fragmentación y ensamblaje, seguridad, confidencialidad de datos, etc.



IP (Internet Protocol) versión 6

La nueva versión del protocolo IP recibe el nombre de IPv6, aunque es también conocido comúnmente como IPv6 (Protocolo de Internet de Nueva Generación). El número de versión de este protocolo es el 6 frente a la versión 4 utilizada hasta entonces, puesto que la versión 5 no pasó de la fase experimental. Los cambios que se introducen en esta nueva versión son muchos y de gran importancia, aunque la transición desde la versión 4 no debería ser problemática gracias a las características de compatibilidad que se han incluido en el protocolo. IPv6 se ha diseñado para solucionar todos los problemas que surgen con la versión anterior, y además ofrecer soporte a las nuevas redes de alto rendimiento (como ATM, Gigabit Ethernet y otros).

Una de las características más llamativas es el nuevo sistema de direcciones, en el cual se pasa de los 32 a los 128 bit, eliminando todas las restricciones del sistema actual. Otro de los aspectos mejorados es la seguridad, que en la versión anterior constituía uno de los mayores problemas. Además, el nuevo formato de la cabecera se ha organizado de una manera más efectiva, permitiendo que las opciones se sitúen en extensiones separadas de la cabecera principal.